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by

Zhaoben Fang 1,2
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Abstract

The property of independent increments is one of the most important for defining both the homo-
geneous and nonhomogeneous Poisson process.

In this paper we give two ways to relax this requirement and characterize the nonhomogeneous
Poisson process by some moment conditons. .

One result is that a counting process {N(t),t 0} with finite moments of all orders is a nonhomo-
geneous Poisson process with mean functions m(t) = EN(t) if and only if for any ti, i = 1,...,k

cum (N(tl),...,N(tk)) = min EN(ti)
15L~k

where cum () is the joint multivariate cumulant.

A second result is that if increments on any interval are Poisson distributed and an exchangeable
condition is assumed then the process is nonhomogeneous Poisson. This extends Renyi's (1967)
result.

Key Words: Nonhomogeneous Poisson Process, independent increments, characterization problem,
joint cumulant, exchangeable.
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1. Introduction

-- Poisson processes play an important role in many fields. The Poisson process is one of the sim-

plest counting processes and is a building block for many other processes, especially for general

independent increment processes.

Many definitions have been given for a counting processes to be a Poisson process and many

papers have appeared dealing with characterizations for the Poisson distribution and the Poisson pro-

cess.

Among the qualitative conditions defining a Poisson process, independent increments is one of the

most important conditions. In this paper we attempt to use other conditions in place of independent

increments. This provides a somewhat different viewpoint for examining Poisson processes. In addi-

tion, new characterizations for the nonhomogeneous Poisson process via moment conditions are

obtained which might be easier to utilize in practice.

For clarity we give a standard definition first.

Definition 1. A counting process {N(t), t > 0} is said to be a nonhomogeneous Poisson process with

parameter function m(t) if

(i) P{N(O)=O} = 1,

(ii) the process has independent increments,

(iii) for 0 < s < t, N(t)-N(s) is Poisson distributed

with mean m(t)-m(s), i.e.

P{N(t)-N(s)=k} {m(t)-m(s)} exp {-(m(t)-m(s))} ()k!

for k-0,1,2,... where m(t) is a nonnegative nondecreasing function of t.

,es
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For the purpose of exposition we assume m(t) is continuous. Renyi (1967) made an essential

improvement in relaxing the condition of independent increments. This is given in the Theorem I

below.

Let R+ = {t, t - 0}. B be the Borel set of R+, 5(- {finite union of disjoint finite intervals (a,bJ

on R+}, and I=(s,t] be an interval on R+. Let t(E) be an additive stochastic set function defined for

EEiwhich counts the number of events of a counting process N(t) falling in E. In other words, 4(E)

represents the total increments of the process N(t) on intervals in E. It follows that ,(I) = N(t)-N(s)

is the increment on (s,t]. Let X(E) be a measure with no atoms in E UX, such that X(E) < -0 for

EE' and X(I) = m(t)-m(s) where I = (s,tJ. Here m(t) is a nonnegative nondecreasing function of t

which is assumed to be continuous.

Theorem 1. Let {N(t), t _ 0} be a counting process with P{N(O)=O}=I. If for EJ 4(E) has a

Poisson distribution with mean value X(E), then N(t) is a Poisson process with mean m(t).

Proof. Renyi (1967).

If it is assumed only that (I) has a Poisson distribution for any interval I in R , Shepp (see Gold-

man, 1968) has constructed a counter-example to show that the process need not be Poisson. Further-

more, Oakes (1972) has provided a construction of a counting process such that even if for fixed k the

counts (Ii) in any k contiguous interval Ii = (til,ti] are independently Poisson distributed with mean

_1. N(t) need not be a Poisson process. This process is called a k-fold quasi-Poisson process.

An interesting question is to determine additional conditions needed to ensure that a process is

nonhomogeneous Poisson with mean m(t) besides the condition that (I) is distributed as Poisson with

mean X(I). In Section 2, we introduce an exchangeable condition which was suggested by Dr. Z. D.

Bai (personal communication) to replace the independence condition.

It is well known that independence implies uncorrelatedness, but the converse is not true in gen-

eral. In Section 3, we use the idea of joint cumulants developed in Block and Fang (1985) to gtie a

.". ,, " * . -. W .' ..' . .. 0,% q. . -' r .. ' %. .-. .- .- 
'
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characterization for nonhomogeneous Poisson processes via moment conditions under which uncorrelat-

edness between increments implies independent increments. It naturally follows that if (I) is Poisson

distributed for any interval then the counting process is nonhomogeneous Poisson.

Both arguments above relax the common condition of independent increments for a process to be

Poisson.

2. An exchangeability condition

In this section we prove that a counting process is Poisson under an exchangeability condition.

Here we use exhangeability with respect to a finite number of rv's.

Consider a counting process N(t) on R+. Let I be the interval (a,b], II = b-a (the Lebesque

measure for interval I). A(I)={N(b)-N(a)=O} (the event that there is no occurrence of the process in 1),

and let IA(1) be the indicator function of A(I).

First we prove a lemma to show h'jw the exchangeable condition works, then by using this lemma

we cbtain a new set of conditions for a Poisson process.

Lemma 1. If for any interval I = (a,b] on R'

P{N(b)-N(a) = 0} = e- X ll  (2)

and for any contiguous intervals Ii = (tiy,t] i=l,...,k such that 1lii =8, 8> 0, the rv's

1a(1, i=l .... k are exchangeable, then 1 A(I ) i=l,...,k are independent.

M
Proof. From A(li) = {N(ti)-N(ti I ) = 0} we know that ifJ = . Ii.' imE {l ... ,k} m = ],...,M

-'Sl

M M
then A(J) = r A(i 1 ) and IA(J) = H IA(I, )" It is easy to see that the ]A(,) are identically distri-

m=I nl I

'S. buted Bernoulli rv's with parameter p, where p = eU.

Similarly, since the 1A(I,)'S are exchangeable we have

PIA(i) = I } = PIAcI, = 1 m = 1 .... M

%
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= P{A(Ij)= 1, i= 1...,M} "

= P{N(tM)-N(to) = 0}

= e-k I (ttMI = e-X(tM-t0) = e-.M = pM

i.e., 'A(J) is Bernoulli with parameter pM.

Now, for fie {0,1}, i = 1,...,k. Let B0 = {iIfi = 0}, B1 = {ilfi = 1}. Bo t.j B 1 = {1,...,k}.

Card Bo = Mo, Card B1 = M, and Mo + M1 = k. Denote the complement of A(I) by AC(I). By P

exchangeability we have r

P {1A( =fi, i= 1...,k I

= P {A(I =0,ieB0 ; IA(Q) = 1, iEBl}

(V -V
= i= 1 i=Mo+ 1 

.A(I)

r A'(I,) (Th A(I)

= E {( I( -1A3

-(". H(O jIl(i=Mo(3

I j1 =M IM +
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wr SSince the 'A(lI'S are exchangeablewhere Si 1A(l ) '*(' A(Il)"1 < ii <'...< ij!5 Mo

r kE Sj I 1A1(IN

i =M" + 1 J

k
= E I rl I- A(I)O

1-i :'-<  M . A(lt m)  i=M O + 1

= E 1A~q Mid ...('nA(Ii) (A(IM o.  ""---A(Ik)
1<i<"<ij! M- Mo

1 i pk-M-+j tN4 0 ppk-MO 4)I < <...-<iJ _ MO 4

It follows from (3) and (4) that

P{1 A(Ij f i, i = ...,k I

= pk-Mo _ (_l)J1 Mo] pk-Mo

j=lI

= pk-Mo ( 1 p)Mo = P 1 A(1 = fi

We now state the main result of this section. Here the usual condition of independent increments

* is replaced by an exchangeability condition.

Theorem 2. Let {N(t) t > 01 be a counting process. If the conditions i) - iii) below hold, the

{N(t), t > 0} is a homogeneous Poisson process with mean function E{N(t)} = Xt.

i) For any interval I = (a,b] P{N(b)-N(a) = 01 = e - kI'1.

% V Kv <*q..?1'' VA'# .**. r
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ii) P{N(b) - N(a) 'a 21 = o (X I II) as II -4 0 uniformly in I

iii) For any finite number of contiguous intervals Ii = (ti- 1 , ti] i = 1,...k such that I I M 5, the rv's

1A(i) i = 1,...,k are exchangeable.

Proof. By the proof of Theorem I and Remark I in Renyi (1967) we need only prove that for any

disjoint intervals El, i = 1 .... n 1 A(E i = 1,...,n are independent. If this is proven, it then follows

from the argument there that {N(t) t _> 01 is a process with independent increments and consequently

{N(t) t > 01 is Poisson process.

We can arrange the Eis according to their order in R +, relabeling them if necessary, and cut them

into small intervals of length E beginning at E1 . For any C > 0 there exist a set of intervals

Ei i = 1,...,n such that Ei c E, I Ei= ciF ci are integers and IEi - I I - 2E. Furthermore,

the Ei can be chosen so that Fi the space between Ei and El+1 are intervals of length I Fi = diE,

where di are also integers, i = 1,...,n-1 as shown in the diagram. Denote the interval of length C

which contains Fi_1 - Ei by Ail and the interval of length E which contains Fi q Ei by At2. When

Fi_1 (' Ei or F i - Ei is empty, define Aij = empty. Thus I AijI < £, j = 1,2, i = 1,...,n.

E l E2  E n,12 62 2.. n
SF, E2  F 2  Fn

Diagram 1

By Lemma 1, all contiguous subintervals I9 of length £ have the property that 'A([ )'s are indepen-

dent. It follows that lA(E')'s are independent since Ei E " = empty for i j and IA(E) only depend

on IA(y)'S such that I c Ei'. Since E,' C E, c A1 Q E ' tU A,2 . we have for anr

N*s~,.S.s-*& .. * ~ '' . - . . . . . . .
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1 1i,..,lmnfm=,...,n

2!E 1 A(E ) -AE,)

E fl 1A(41, U Ei11 U Ai,2)

EJT ACE) LI iIA(A4, 1 A( }2
E EtH A(E 'i)}E t 1 A(Ay I}E I~ 1A(! J}

=E 1 1A(E;}

Thus

frn -2kmc m

Et 1 A(EI'j )e - E I A(El')

m m
5 En H A(E,) H ) E 1 A(E,)

j=I j=1

E 1 (:IEIA(E)}e-km
j=I t

Since C are arbitrary, we obtain that the 1A(E,)'s are independent from the fact that 1 are indepenl-

dent.

For the nonhomogeneous case, we have similar results.

AM&
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TIheorem, -? let jNMt t 2>O1 be a counting process and let Xbe a nonatomic measure on B the class

A4 Borel sets on R' For intervals I =(a~bI c- R-, let ?k(I) =m(b) - m(a), where mn is a noflfegatl\C

nondercaising continuous function Aith m(O) =0. If the following conditions i)-iii) are satisfied, then

N~ is a nkunhomo~eneous Poisson process with mean function E(N(t)) = tf(t).

,)For anN intersal I = a,h). P{ N(b) - N(a) = O} = eW

ii, PNch, - N\a, = (j -- 2~ (/ilt) as -/A) -4 0) unifor-mly in 1.

, l 1-t r an-, ti ite numbher of cont iguous inter-vals 1, (ti-1., ti I =1,..k such that

11, 1 . 6. , 0. I= I ...-J, the Irv's Il are exchangeable.

IPr,kof1 We tolliow the same line of argument as in Lemma I and Theorem 2. We need only replace

p =e b, p= e 0,divide the E,'s by sub intervals 1, with ?.(1) =- C1, etc. We omnit the details.

Remark I Without it and ii) in Theorem 3, the condition of independent increments and the

exchanzeahihir of (tie I A(, In fit Iof Theorem I are not equivalent.

Remark 2 Definition 1, the condition in Theorem I (i.e., r,(E) is Poisson distributed) and the condi-

tions in Theorem 3 are equivalent. We show this in the following.

Definition I implies the conditions in Theorem 3, i~e., if N(t) has independent increments then

EAtlE E'~,)E 1 ( e-m~1 E IA ...~lm

for any I it,. im k so that IA(I)% are exhangeable.

The conditions in Theorem I imply the conditions in Theorem 3, i.e., let E Ij Ei Then

lE l 1 ,j-tA0tI

P( ............... M)

P("-(E 0) M8

e %.
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= E 1A(lY""IA(l,)

for any 1 -- i1 ....im < k. Thus the 1A(IJ'S are exchangeable.

By Theorem 3 we know that these three sets of conditions are equivalent. However, the condi-

tions in Theorem 3 are somewhat easier to check.

Remark 3. Oakes (1972) mentioned the result that if (Ii), i = 1,...,m, where the Ii are contiguous

intervals, are independently distributed as a Poisson distribution with mean liI for all m, then N(t)

must be Poisson. This fact also follows from Theorem 2. To see this choose special contiguous inter-

vals Ii such that I Ii = 8 then e_(Ii) are i,i,d Poisson (8). Thus the 1A(1)'S are exchangeable for any

Ii i = 1,..., m of length 5 and contiguous. By Theorem 2 N(t) is a Poisson process.

Remark 4. Under condition iii) of Theoem 2 or Theorem 3 we can weaken conditions i) and ii). We

need only assume they hold for the special class of intervals having the form I = (0 t].

3. Characterization Via Moments

We recall some definitions and properties for the rth joint cumulant which was discussed in a

recent paper by Block and Fang (1985).

Definition 2. The rth joint cumulant of (X 1 ..... X) is defined by

u m , . . . .X r) = ( -1 ) P ' ( P 1 [ .. E X(

where the summation extends over all partitions (VI, .... Vp), p = 1,2,...,r, of { 1..r}.

We state some properties which are easy to check.

(i) If any group of the X's are independent of the remaining X's then Cum (X1, .... Xr) -0.

(ii) For (X1, . . . ,Xr) independent of (Y 1, • • • ,Y,) Cum (XI + Y 1. . . . . Xr + Yr)

= Cum (Xi .... ,Xr) + Cum (YI, Y d •
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(iii) Cum Xi = EXi and Cum (Xi, X) Cov (Xi, Xl).

(iv) The joint cumulant is a multilinear operator.

A useful relationship between moments and cumulants is given in the following lemnma.

Lemma 2. If EJIXim<O- for any

EXi--Xm -EXf--EXm = cum (Xk, kF-vl)-- CUM (Xk,kEvp) (6)

where I extends over all partitions (V 1, . Vp)) p = 1,...,m-1I of { 1,.,m}

Proof. See Lemma I of Block and Fang (1985).

For the characterization problem here we need the following result.

Lemma 3. If for all positive integers qi 5 ri i = 1,2,... .m such that Eqi <~ Yri we have

EY Eq .. Eyq.Yhn Yr,.. Yrm-EYrlEyr

cu Y1 - - - , YM.....I *I..(7

rr,

Proof. By Lemma 2.

= cum (Y ir, iEVI)-cum (Y ir,, iEV) (8

where the sum is overall partition (v 1, ,vp) p = 1,2,...,m-1I of ( 1I..,m .

Now by the conditions of Lemma 3 and induction we have the previous sum is

cm(r .... Yr.(9

Using Theorem 2.3.2. of Brillinger (1975) this turns out to be

-~. .~% "&~ -. . *S % %~*%%



cum (Y , jCVll...cum (Yj, jevP) (10)

where the summation is over all indecomposable partitions of the set {I,....1,....m,....m} wrt to parti-

tion {1.....1}, . . . , {m,...,m} where the number of i's is ri for i = 1,...,m. The desired result follows

by using the conditions of Lemma 3 and induction once again. Since for all proper indecomposable

partitions vi, cum (Y , j~vi) = 0.

Now we return to the nonhomogeneous Poisson processes. Some basic facts are reviewed below

for the nonhomogeneous Poisson process {N(t), t _ 0} with mean m(t) = EN(t), t _ 0.

(i) The characteristic function of N(t)

ON(t) (u) = E{exp (iuN(t))} = exp {m(t)(eiU-1)} (11)

is analytic in the whole plane.

(ii) The rth moments of N(t) are polynominal in p. = m(t). More precisely we have

k
E{(N(t))k} = S Si,k .t (12)

i--o

5° where Si,k is the Stirling numbers of the second kind defined by formula

J.Si,k = I ± (-l)i-i 1 (13)
i' = "j=0

(See Riordan, 1937)

We characterize the nonhomogeneous Poisson process as follows:

Theorem 4. Let {N(t), t > 0} be a counting process with finite moments of all orders. This process is

a nonhomogeneous Poisson process if and only if for all real ti, i=l,...,k

cum (N(tj),...N(tk)) = min EN(ti). (14)
15_i<_k

Proof if {N(t), t _ 0} is a nonhomogeneous Poisson process, we assume tj < t. < _ tk. Since N(t)

% % WV %~-~ * .W
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has independent increments, N(tj) is independent of N(t) - N(tj), i = 2,...,k. Thus (N(t1 ),...,N(tj))

is independent of (0, N(t 2) - N(tl),...,N(tk) - N(tj)). Using properties of the cumulant

cum (N(tl),...,N(tk))

= cum (N(tj), N(t1) + N(t2)-N(tl),...,N(tl) + N(tk)-N(ti))

= cum (N(t1),...,N(tj))

+ cum(0, N(t 2)-N(tj),...,N(tk)-N(tl))

= cum(N(t1 ),...,N(tj)) (15)

Let Ci,k denote the number of ways of partitioning {1,...,k} into i groups for where i > k or i < 1 we

let Cik = 0. For example when k=2 we have Co,2 = 0, C1 ,2 = 1, C 2,2 = 1, C 3.2 = 0 etc. For all k,

C1,k 1, Ckk  1. We also have following recurrence formula.

Ci,k+1 = i Ci,k + Ci-l,k (16)

This result follows since one can count the number of ways of partitioning { 1,...,k+l } into i groups by

considering two cases. One case is obtained by setting one element aside, then partitioning the remain-

ing k elements into i groups and then replacing the single element in any of these groups. The total

number is iCik. The second case is obtained by counting the numbers of partitioning into i groups

where the single element forms one group and then partition the remaining k elements into i-1 groups.

This number is Cil,k.

Notice that (15) coincides with the recurrence formula for Si,k in (12) and

SOk = 0 = Co,k
S l,k -'( -a)I-1 [ Ik

- I ,k

So we get

Si,k = Ci,k . (17)

Now using this fact, we can prove that cum (N(tj),...,N(t1 )) = jt, where . = EN(t1 ). We use

induction on k, the number of N(ti)'s in cum (N(tj),...,N(tj)). When k=1 the result is trivial. For

% . . ... , .....- .
'a~ ~~~~ 4i hf ~' ~
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k=2, Coy (N(tl), N(t 1) = Var N(t1) = pt, which is well known. For k > 2, by Lemma 2 we obtain

cum (N(tj),...,N(tj)

= E {N(tl))k} - X cum (N(ti), ir:vl)"'cum (N(ti), icvp)t= L, (18)

where the summation I extends over all paritions v 1, . . . Vp of {1,...,k} for p 2,...,k. Now by

the induction assumption and (12), (17)

cum (N(t1),..,N(tj))
k

= E{(N(tl))k} - Ci,k
i=2

k k
Ci,k Ci,k C 1,k .= (19)

i= 1 i=2

Combine (15) and (19), (14) follows.

To prove the sufficiency we need to prove for any interval (t1, t2], N(t2)-N(tl) is Poisson distri-

buted and N(t) has independent increments. From (14) and E[(N(t))k] < o, we have

cum (N(t),...,N(t)) = EN(t) (20)

Let .t = EN(t) and substitute (20) in (18) (replacing tj by t). we have

k ti k i

E{N(t)k} - . + I Ci,k "- Z Ci,k

i=2 i= 1

which coincides with the moments of Poisson rv's given in (12).

It is well known (see Y. S. Chow 1978, p. 280) that if the characteristic function of a distribution

F is analytic, the F is uniquely determined by its' moment sequence. Since the characteristic function

of Poisson is analytic in the whole plane, we have that N(t) is Poisson with mean E(N(t)).

For increments N(t 2) - N(t 1) on (ti, t2] we need only check

cum (N(t i) - N(tj),...,N(t 2 ) - N(tj)) E(N(t 2) - N(tj)) (21)

since the above argument gives that N(t 2) - N(tl) is Poisson. By (14) it is easy to see that
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cum (N(%-) - N(t), ...,N(ti) - N(tl))

= cum(N(t2), N(t 2) - N(t1),...,N(T 2 ) - N(tl))

= cum(N(tl), N(t 2 ) - N(t1 ),...,N(t2 ) - N(tl))
=cumn(NOt2, N(t2)-N(t 1 ),.....N(t2 ) - N(tl))

cum(N(t 2),...,N(t 2), N(t 2) - N(tl))

= EN(t2 ) - EN(tl) = E(N(t 2 ) - N(t1 ))

Here we use the multilinear property of joint cumulant.

It follows from (21) that N(t 2) - N(ti) is Poisson distributed with mean E{N(t,) - N(tl) }. Con-

sequently, the characteristic function of N(t i) - N(ti_,) is analytic. We also know that, for rv's

X . .Xr if for each i, i = I,...m

S EX . (22)
k k!

has a positive radius of convergence as a power series in 0, then the joint distribution of

(X 1,.. , Xn) is determined by its cross moment EX1 t,... , Xr" where ri are nonnegative integers

(see Billingsley, 1979, p. 351) for Poisson marginal (22) hold. To prove independent increments we

only need to check

EX .... ,X r, = EX r ..... EX r  (23)

for all ri, i=1 .... m where X i = N(ti) - N(ti- 1 ) and where (ti-l, til, i = 1 .... m are disjoint intervals on

R+.

We check (23) by using Lemma 3 and induction. For m=l, its' trivial. For m=2, r, = 1,

Cov (X 1, X2 ) = Cov (N(ti) - N(to), N(tl) - N(tl))

=Cov (N(tl) N(t)) - Cov (N(to), N(t 2))

-Cov (N(ti), N(t 2)) + Cov (N(to), N(tl))

- EN(t 1) - EN(t o) - EN(t 1) + EN(t o) = 0

So EX1 X2 = EX 1 EX 2. Similarly, we have

Cov (Xi X) = 0 i j
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which means increments on disjoint intervals are uncorrelated.

By (14), we also have

cum (N(tl) - N(t0 ),...,N(tm) - N(tlm)) = 0 (25)

which means increments on disjoint intervals have zero joint cumulant. More generally,

cum (XI,... XA,.. ' .

-2rm I {EN(tl) -EN(tI)}

+ 2"'] 2lJ{ENt) - EN(t0 )1 0 (26)

We do a simple case as example. Assume to < t, < 2

Cum (X I, X1I, X2)

=cumn (N(tl) - N(to), N(tl) - N(to), (N0t2 ) - N(t1 ))

=cum (N(ti), N(tl), N0t2) - Cumn (N(ti), N(t1 ), N(tl))

-cum (N(t 1 ), (N(to), N02)) + CUM (N(t1 ), N(to), N(tl))

-cum (N(to), N(tl), N(t-,)) + cumn (N(to), N(t1 ), N(tl))

+ cum (N(to), N(to), N(ti) - cumn (NOtO), N(to), (N(ti))

= EN(t1 ) - EN (t )I + 3 { EN (to) - EN(t0 ) I = 0

From (26), Lemma 3 and induction (23) follows for all r1, which imply independent increnients tor

N(t). This completes the proof.
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As a by-product we have the following result.

Theorem 5. If the rv X satisfies E IXI < o for all n, the X is Poisson distributed if and only if

cum (X,...,X) = EX for all m.

The characterization here provides another example of independence characterized via uncorrela-

tion. Test methods for a counting process being Poisson can be constructed by using this result.

- w .i. % - .- ,
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